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Abstract

In this memorandum, a theory for representation of randomly time-
variant channels is outlined and applied to the development of a tapped
delay line method of simulating such channels, Some experimental re-
sults obtained with a tapped delay line simulator are also presented.
The memorandum begins with definitions of the appropriate functions
needed to specify randomly time-variant systems, Next, the tapped
delay line method of simulation for time-variant channels is derived.
Attention is also given to deterwining how closely the delay line systenm
approximates the mathematical model it is supposed to represent., The
linear delay distortion and linear amplitude distortion parameters as-
soclated with a channel are defined and discussed, Then the equations
necessary to compute them on the digital computer are derived, Next,
the theory outlined in this memorandum is used with a theoretical model
of a tropospheric scatter channel to design a digital computer si~ulator
for troposcatter channels, Finally, some experimental results obtained
with this si~ulator are presented.
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beon done for both equations with the
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I. Representation of Time-Variant Channels

In this report, a theory for rzpresentation of randomly time-variant

chiannels 1s outlined and applied to the development of a tapped delay line

method of simulsting such channels. The simulation method is due to Stein®

and much of the notation of this repert coincides with that of reference 1.
It will be assumed that the channel under consideration can be represented
58 & Ylme-variant linear systenm.

We will represent the transmitted signal x’(t) as

x’(t) = Re{x( t)er“fot} (1-1)

where x(%} is the complex envelope of x'(t}. It will be assumed that x'(t)
is a bandiimited signel with spectrum exlisting only in the renge

B B,
(£, -% %, * 3/

The channel, being a linear time-variant system, is described by its

+ine-variant impulse response h(t,t), which can be written as

n(z,t) = Be{a(x,t)e"z"fot} (1-2)

h(t,t) is defined as the response of the channel at time t to an impuise
applied to the chaumnel T seconds earlier (i.e., at time t-1). pg(T,t), tre

conplex envelope of h(T,t), will te celled the equivalent low-pass imvuise

response of the channel.
{

If the signal x’(t) is applied to he input of the channel, then

&

the response of the chamnel will be y‘{%), where y'(t) is glven by:
- -]

y'ie) = | mlten,n) x(vlas (1-3)
-



Now y'(t} can be written in complex envelope form

y'(%) = Re{y(t)e?? oY (1-4)

It can be shown that when the bandwidth iBis small with respect to the
frequency f_, y(t) is given by '

¥e) = | plen,b) x(n) ar | Cas

3

If we consider the spectra of x(t) and y(t), given by

(=~}

x(g) = | x(t)e

-Jenft 4. {1-6)

and

Y(£} = J g(t)e I2EE g4 (1T}

and define the channel low-pess transfer function as

Hig,t) = j g.(-r,t)e"dz"f" dat {1-8)

-0

then we have

o

yit) = [ X(#) B(g,0)e BT g (1-9)

-0

Note that H(£,t} is the amplitude of the equivalent low-pass channel's
response at time t to a2 slnusoidel excitation at frequency f. This can be

Jenfs

shown by noting that if x(t) in {1-5) is ¢ , then y{t) becomes

© y(t) = (e, t)ed2RLE
It will be assumed that p{%,t) is a sample function from a complex,
zero-mean stationary Gsussian random process. Therefore, the statistics of
g{t,t) are completéiy described bty its autocorrelation function with respect
to =ach of Lte two variables. The correlation functlion corresponding to

f{t,t) is given by



Ry(T,t,0,8) = B(7,2) BT+, £ +38) (1-10)

We will essume that the chennel to be modeled obeys probability laws
which are independent of the variebvle t (i.e., p(7,t) is wide-sense sta-
tionary in the variable t). That is, only the time difference and not the
actual time of evaluation ie pertinent in the evaluation of RB' Thus we
can write '

RB(T:tuU':a) = Rﬁff,u,ﬁ)

7
We can define a correlation function for H{f,t) in @ manner similar to

(1-10).

R(£,%,0,8) = B(Z,t)EHE + O, & + ) | {1-11)

RB can be related to RH as follows:

RBQZT’”’B) = B(1,t)B%T + 1, © + B}

= | m(g,t)ed?™E e j' Ee(g), o 8)e MY T B qe.
. )

-0

= j H(f,t)ﬁ*(fl,t +5

) e,jzxt(f-fl)e-.jzxflu ag “1

> o o« .
R TR et L TR (1-12)
«ld 0

We note that since RB i3 independent of t, then RH must also be

independent of t. Thrs we have
’ ® ® ‘ A
Re{Trwnd) = | . L, Ry(£,2, 2,6 e I2rT(fy L) -gentyu o0 ar,

Let us now assume that the stetistical properties of the channel being
considered are such that Rﬁ depends only on the frequency difference between
the twc frequency variables of interest and not the actual values of the

frequency variebles {i.e., H(f,t} is wide-sense stationmary in the variable £).



This means that Rﬂ(f,fl-f,é) is only & function of £ -f and not of £

1
explicitly.

Thus
Ry(£,£,-£,8) = Ry(£,-1,5)

Therefore R, can be written

B
D Jent(g,~£) ~jentf
- (P P L) dalt - =Ja i
Rﬁ(‘t,p.-,é) = f_m La Rﬂul r,8)e 1™ e 1" af af,
Letting 0 = £,-£, d0 = -af

¢ ® - -
R(tws8) = | [ By(0,6)e7F e qoag)

= ‘[ e~ Jentyp af, j;m RH(Q,E)e'JZ"m an

Thus
RB(f:ﬂ:6> = 8(p)o(7,6)

vhere o(1,6) = J nﬂ(o §)e EM gn

)

(1-13)

(1-14)

(1-15)

Physically we may envision this result as indicating that the charnel

scatterer or path which introduces delay T in the transmitted signal has an

assoclated transmission gain which is uncorrelated with that of any diff-

erent delay. 2
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11, Tapped Delaey Line Simulation of Time-Variant Channels

In this section a basis for tapped delay line simulation of the
equivalent low-pass channel is developed. We recall that x'(t), the
transmitted signal, was-:defined to be & bandlimited signal whose frequency
components exist only in the range (fo - -g, £+ ;g). This means that x(t)

(see Bq. (1-1)) is also a bandlimited signal existing in the range

- .g, + -g-‘). Thus we can write
3 m:
sin x B(t - %) ,
xt) = ) x(2) B (2-1)
B x B(t - 3)
=~ B
Therefore
-]
y(t) = J B(t-1,t) x(7) ar
. -}
@ m
@ sin x B{t - 3)
= [ Bene) ) =@ . ar
- e % B(t - 'ﬁ)
@ m
© sin n B{t - =)
B
yo = Y (B[ stne E g
- - n B{(t - =)
T - B
letting
u= T~ %, dt = du
w0
® in x B
f0) = ) x(B) [ e(tu 5 ¢ SRERL g
D= = -2
1 V(@ m oLy | {2-2)
y(t)=§§:k(3)ﬁ(t-3,t {
=~

where



o @©

Bz,t) = [ B(z-u,t) BRI g [ pggy) Mo Blzaly, (5

Now note that B 1s the convolution of s sin x

function and p(7,t).
Therefore B 1s a bandlimited function and we can use the sampling

representation for it

a > X sin n B(z-—%)
Blz,t) = ) B( Et) —— (2-4)
k=0 Bz - -ﬁ)
Therefore
¥t =% ) 2y (t-B,0
xn_-_..w
w© -4 m k
- sin x B(t - = ~ =)
=3 ) (3) ) spw T
e om0 Kt -5 -3
<0 o0 k
- sin 7 B(t - = - 32)
-3 ) a(kw Yx(B i
ke o * Bt - g -3
w8 =% ) 85 x(t -5 (2-5)
k=~

Now since we desire to associate p(7T,t) with a physical dispursive
channel, we expect that p(7,t) should be zero for some value of T greater

than T , say. Therefore B( T, t) should also be essentlally time-limited

max
in that there should be some quantity Tm such that the energy
” 2
I I8(,t)1%ar should be negligible compared to the energy
fzl >
m
a ) 2
*
IY ‘ 16(*,t)1°8% g refore, the Polloving approximation is valid
| < 7T
n

An actual charnel, being physically realizable, will have some average
delay T  such that 8(7,t) vill be nonzero in the range ( T T, Tt Tm)y
T, > T . Since the value of T has no effect on the shape of the received
weveforms, it kas been assumed to be zero for convenience.



eT 1,
y(t) ~§ Er §< 2t x(t - ) (2-6)
m=={ BT
m

where [w] is the largest integer in w.

i
B

block diegram for a representation of the camputing of y{t) from x(t)

Now if we define b (t) = p( %,t) and let A = = we caa use the following

x(t)--

sl

This diagram forms the basis for the tapped delay line simulation of the
time-variant channel.

As vwas stated previously, the statistical nature of g(7t,t) is com-
pletely spocified by its correlation function. Now in order to accurately
simulate the channel with s tapped delay line model, it 18 necessary that
the bm( t)'s possess the statistics which will produce the proper statistical
characterization of 8(7,t). The statistical properties of the bm( t)'s will
now be determined from the statistics of g{7,t).

We first note that the bm(t)'s are linear functionals defined on
p{t,t). Thus, they are stationary Gaussian random processes. It there-
fore suffices to caompute their correlation functions to complete their
statistical description. Recell that the gein function for the mth tap at

time t was found to be (see Eq. (2-6)).
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B (8) = Blas,) = |~ plu,) SREB - u) g,

Let us now define the correlation function associated with these tap gains

as follows

b (8) = b (£) b (& +5) = B(ud,t) B (nd,t + B)

- | nlue Si2rlebo 8 gy [ 6%, we)ti Rt

=[] Bl seiieusn aienes) o0 a

sin sB(mA-u)sin nB(nA-

= J-Q j‘-m Rs(u,z-u,a) AtmAoajn(nboz) z) dz du

= j_m I‘_w 8(z-u)o{u,d) sin 2?&125;1)}3?3-2§(m.§> 4 du

5) 8 sin xB(mA-u)sin xB(nA-u) a
Pn! ) L o8] S a) (adoa) :

{2-T)

Now for values of m and n vhich are not near to each other, the product of
sin x
the %

functions is small and the value of p mn(&) should be small. For
values of m and n which are near to each other {say Im - n| = 1 or 2), the
orthogonality of the S12-% gunctions will cause the value of p_(8) to be
small provided p(T,A) is remsonably constant over a range of width 54 %o 104
near © = mA or nA. We can expect that p{T,3) will be reasonably constant
over regions of width 5A to 10A if the total multipeth delay spread of the
channel is much larger than A. This approximation is not as valid for taps

near the ends of the delay line és for taps near the center; however, the

strengths of the tap gain Punctions et the taps near the ends will normally



be much smaller than for taps neaxr the middle. This demonstrates that
for many cases of interest, a tapped delay line model can be developed
using the assumption that the fading at each tap is uncorrelated with the
fading at any other tap.

If a more exact representation is desired, or the aasmption-@f-’ indepen-
dent fading at each tap is mot valid, then the correlatioms p_(8) must be
computed by equation (2-7) above. Then, if the assumption that p(Tt,3) is
separabl.é\ is made (i.e., p{T,5) = r{1).q(8)), a straightforvard method of
crea_ting tap gein functions with the proper correlations from a set of
independent Gaussian random processes can be found. The assumption thé{; o
p(7,5) 18 separable can be shown to be equivalent to the assumption that
the velocity distribution of the scatterers is identical for each group of
scatterers contributing a given delay ‘t? I% also appears that the present
state of theoretical and experimental kncwledge concerning existing scatter-
multipath channels is not sufficlently well developed to provide a more
detailed indication of the precise form of the chamnnel correlation functiom.

With the assumption that p(7,5) is separable, we find

p(7,8) = x(7)-q(8) (2-8)
and
p(7,0) = »(7)-q(0)

Without loss of generality, we can let g{0) = 1. Therefore, r(T)} must

be positive for all t. Now from equation (2-7) we £ind that the correla-

tions for the tap multipliers are of the form

i

J’ * sin :tB(mA-uLin aB{nA-u) o(u,8)du

3
Punt>) - 2°(mA=u)(nA-u)

o(5) J’ sin nzix:A-;é:Zn :;B(nA-u) r(u) du
-1 =11



= a(8) r (2-9)

where

r = f ” sin xB(mA-u)stn xB(nA-u)
mn o ﬂa(mA-u)(nA-u)

r{u) du (2-10)
This means that all the tap multiplier auto- and cross-correlation
functions have the same functional dependence on §. Therefore, the tap
multiplier functions have identical forms for their auto- and cross-power
spectral density functions. Thus, the set of tap multiplier functions cen
be generated from a set of ZFBTm} + 1 independent Gaussian random processes
whose spectral densities are all identical to those of the bl‘n(t) 's by form-
ing suitable linear combinations of these processes. The appropriate
linear cambination can be determined in the following menner. Let the in-
dependent processes to be cambined be ai(t), i= -TB‘I‘m], eeey =1,0,1,00.

.o .Fﬂrm]. Since the ai(t) are independently generated, we will have

a (t) a*nff t48) = a5) (2-11)

®m

8 - {1 m=n
mn O mfn

Here we have assumed that azm( t) = 1 for convenience. As stated above,

the bm( t)'s are obtained from a linear combination of the am( t)'s. Thus

we have
B
b (%) = Er &g 2 (V) (2-12)
k=-,3'rm]
where the c ‘s will be camplex constants. The correlation of the bm( t)'s can

now be written as

Pim

8) = b (8) b HW) =) ) g gy () &, (440)
el



=V}: ¢ c::J 84 (5
J B

Pyn(®) = q(B)[Ecmk e‘:k ] (2-13)
k |

Now fram equation (2-9) we know that

on(®) = T q(?,)

Thus '
T #*
Ton =/ Smk Snk for all m,n | {2-1h)
k

’ *
Now let us define the following matrices :

R= Trmn]
cs?cm]

- (CT)* (conjugate transpose) : {2-15)
Then equation {2-14) becomes

R=cCC o | (2-16)
Now fram (2-10) it can be seen that since r{t) is real, the T, &re also.
Furthermore, it can be seen that r on = o Hence, R is a symmetric mtz}x
and is therefore Hermitian. Therefore, {2-13) will always have a soluti‘on,
but the solution C is ndt unique. Of the infinity of solutions C, we can
identify one which is a resl matrix (implying the & 13 will be only gain
factors and will not require phase shifts). Since R is real, there existe
a matrix O which diagonalizes R. That is

0RO = A \zﬁ 17)

#* : '
T2 that these definitions do rot conform to the common definitlons of‘
matrices in that the subscripts m and n range over negative as well as - -

bosit:lve values | e.g. the upper lefi-hand corner elemert of R will hgve’
Lhe subscripts - {B'.l‘ ] s = [ BT ]) Obviously, this Pact does not effert '

I
amr of the mabtrix op..ra*tons mvolved

.



2-8

Vhere A is a diasgonel matrix whose elements xiare the elgenvalues of R.

O can be shown to be the matrix whose columns are the eigenvectors of
R. Now, since R is a covariance matrix, it is positive semidefinite, and
therefore all its eigenvalues are positive and real. Thus, one solution
for C is given by , '

c=o0Ao* (2-18)

where I\% is the diagonal métrix_ whose entries are J{: » Thus, the weighting
coefficients required to produce the tap multiplier functions from a set of
independent Gaussian random proceéses can be found either analytically or by

numerical methods.



ITI. BStetistical Properties of Tapped Delsy Line Systems

In the previous section ve have discussed the statistical properties
required of a tapped delay line sysi;em which is to model a given time-
variant channel. It is now of interest to determine how closely such a tapped
delay line system can approximate the given time-variant system. As a
basis for & study of this gquestion, we will now investigate seversl statis-
tical properties of a genernl tapped delay line system. This analysis will
be used in Section V to provide an indication of how effective the tapped
delay line method is for simulation of a certain idealized tropospheric
scatter coonmunication channel.

It is of interest to campute the time-frequency correlation function
for the tapped delay line system. This correlation function 1s defined as

8,(7,7,5,8) = EM(,t) (T + F,t + 8)] (3-1)

Now for the tapped delay line, B(T,t) is given by

M
B(t,t) = } by(t) 8(v-na) (3-2)
D=-M

vhere we have let fBTm] =M
m e ,
3(7,%,%,8) = Ep(x,t)8"(v + ¥, £+ 8)]

M M
-8 ) n (%) 8 (5 -na) )bt (o) 8 (vrm))
n=-M k=-M

M M
= z E E[bn(t) b; (t+6)] 5{t - nd) & (T + F - kA}

DM ke-M
{3-3)



Now E[bn(t) B (t+ s)] was shown in Section II to be equal to
E[bn(t) B (t+ s)] - o(8)

M M
8 (5, t,8) = a(8) ) ) x, 8(s - m) 8(r+ ¢ - k) (3-4)
ne==M k=-M

Note that the product (T - nA) 8(7 + £ - kA) 1s a product of delta
functions which 1s zero everywhere on the (7,f) plane except at (1,?) =
= {nA, XA -~ T) or (1,F) = (nA, (k-n}A). Thus it i equivalent to the

product 8(t-nd) 8(® - (x~-n)A).

Thus
M M
8,(%,F,6,8) = o(8) ) ) r, 8(v - m) 8 (¥ - (k-m)a)
n=eM k=-M
We note that QB is independent of t, so we can write
M M
8,(5,8,8) = q8) ) ) =z, 8(v - m) 80 - (k-n)a) (3-5)
n=-M k=-M

The frequency correlation function for the tapped delay line system
can now be found. Recall from Bq {1-8) of Section I that the time variant

transfer function associated with a system is given by
® 2nfT
H(L,t) = f 8(z,t) e 92T 44 (3-6)
= -

Now the frequency correlation function associated with the tapped delay
line 18 defined as
i) * )
8.(£,0,%,8) = HH(z,8) B (240, t+ 8] (37

Substituting {3~6) into (3-7), w2 bave {compare with Eq. (1-12))



LAY
“J

8,(£,0,4,8) = g[ Jl_.,, B(t, t)e"J27ETy ar, f—m e*(rz,wa)e""z"(fm)fz d,rz]

i

——

= ] [ E[a(r,t)e*(rz,ma)]e"jz_“ﬁl eJen(£+0)T, ar,av,
- -0

-] o0
- I j $,(11,Tp = 7,5,8) e-d2nfny Jen(f + )y oo 4y
-t . . 3

172
(3-8}
Thus ’H and QB are 8 two-dimensional Fourier transform pair.
Substituting (3-%) into- (3-8), we find
® o M M
1(e0,68) = [ [ ) ) ] ry oln - m) 8(r, - @)
- - =M k=-M
o-J2nfTy e,err(f + n)«ca ar, a,
=af8) ) ) ry | ey - m)e BT ar
ne-M k=-M ~ |
'j 6(1’2 - kA)e'jz’((f + Q)"z dr,,
-
M M
- o(8) z z T o~ J2mmAf e,sttkA(f+ )
oM k=eM
X M
8,(2,2,5) = qo(B) 7 z T o IERM(nK)E  J2rAK) (3-9)
D==M k=-M

Note that &, can e éonsidered a two-dimensional Fourier series in £
and Q.

In conrection with the measursment of the frequency correlation functions
it 1s of interest to campute another statistical quantity. To understand the
need for this quantity, let us consider the experimental method which would

be used to determine the frequency correlation function for & channel. The

method is shown in Figure 2.



Filter

5| Band-Pass |__ Low-Pass

Filter

cos(wt) - —

B# Channel >

cos(wt)

cos (wat)-
| Band-Fass Low- Pass
1 Filter Filter
cos(uwyt)
Figure 2

é—» § )Jt—-a—-ﬁ,,

In this experimental system, two sinusoidal signals are tranamitted through

the channel and the responses to these excltations are seyparated at the

channel output. The amprlitudes of the two channel responses are then cross-

cc related to produce an estimete of the channel's frequency correlation

fu .ction for freguency separation @, - ay. To perform this experiment with

8 ov-pass equivalent channel model, tze excitatlon functions must be

e it and e‘}mzt. The response to cuch an excitation will be (see Eq. (1-5)).

o B Jmi(t - T)
cyy(t) = I BLT,b) e as
~03
,ja)i't bl -—;}mi‘t
= 2 j B(7,t) e dv
- ]
Jw, %
_ i
= Ai(t) e
Wi :re
: ® , T )
Ai(t) = J plr,t) e © av = H{ 1/2nm,t)
=

Jo, t

i the amplitude of the ~hrnnel‘'s response to the excitation e

(3~10}

(3-21)

. The

e wve experiment e fetermine the Irecuency correlation function of the



channel will yield the quantity E[Re{Al(t)} Re{AZ(t)}]. For the tapped

delay line system, E[Re{Al( t)}Re{AZ(t)}] can be computed as follows. We
note that

Re{Ai(t)} = Re{ j‘ ma(-r,t—.)e.'jm‘“r d-c}
ﬁe{ I [ Blt,t) + 3 B('c,t)] {cos @t - J sin o ]d‘t}

vhere B(<,t) = Re{p(7,t)}  amd p(x,t) = In{p(7,t)}

' Re{Ai(t)} = Re{ ‘[ ® [ “B('r,t) cos o T + ;('r,t) sin @7 + Jg(x,t) cos ¥
-Js(r,t) stn ¥ jar}
= I-: [;(r,t) .vr.f.os @, T+ 5( 't,t) &in (ni‘t:ld‘r (35125

We note that for the tapped delsy line system

M

Blr,t) = ) b (t) 8(7 - nA)
DM
Thus ) M . ) |
3(")*:) = ? bn(t) 5(? - nA) ‘ (3_133?
z=-M
=9 ) | M P ’ ] .
B(r,t) = ) b (%) 8(t - u) (3-13b)
n=~M |
where ;n(t§ = Re{bn(t)} and Bﬁ(t) = Im{bn(t)}

We now have

ey} - | L1

M
t) 8(z -~ nA) cos T+ }_b (+)8{r - pA)sin w Tlc:i't
- R=-M

‘u N1



M .
= ‘; [bn(t) cos (wmA) + b (t) sin (minA)]
pect (3-14)
Thus
u a cn
E[Be{Al(t)} Be{Aa(t)}] = E[( z [bn(t)cos(mlnb) + 'bn(t)sin(cnlnA)])
DM
M ~ o
(3 [a(@reoslaa) + n(wstalas])]
k=~M
Now the tapped delay iine syetem is constructed such that
o0 0] 0] B m
E[; n(1-.) i;k(t)] = E[;n(t) '::k(t)] =0 all n,k
Thus
M M - '
EER’{Al(t)} R"{Az“: t)}] = E 2 (E{;n(t) bk(t)] cos(w, nd)
n=-M k=-M
cos(axakA) + E[!;n(t) ;k(t)] sin(axlnA)sin(a)zkA) + 0+ 0)
M M r
= S z ---E—k g;c“((mln + u:ak)A) + cos((mln - wzk)A)}
n=-M k=-M
+ f% [cos((mln - mk)A) - cos({ayn + axzk)A)]
' M K '
E.[Re{Al(t)}Re{Az(t)}} = 1f2 z \: T cos{(mln - axzk)A]‘ (3-15)

n=-M k--M



In Section V, Bas. (3-9) and (3-15) are evaluated for a specific time-
variant channel, and Bg. (3-15) is compered with experimental results from

a tapped de’ay line model.
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IV. Distortion Parameters in Time-Variant Channels

The work of 8nnde3 bas shown the importance of the instantaneous

values of the linear delsy distortion and linear amplitude distortion in
time~variant channela. It appears that these types of distortion may be
the most important effects which such channels impose on communication
signals. Linear delay distortion and linear amplitude distortion cam be -
defined in terms of H(f,t), the time-variant trensfer function of & channel.
H(£,t) can be written in polar form as follows

B(2,t) = H(E,8) + JE(E,8) = R(e,t)ed¥ (Frt)
vhere  H(f,t) = Re [H(£,t)}

ﬁ(r,t) = Im {H(f,t)}

P
R(£,t) = [HE(L,8) + Ho(f,8)]2

(4-1)
§(£,8) = tan"L TH(L,t)/H(E, )]

The linear amplitude distortion, o, associated with H(f,t) at frequency £,

is defined to be the first f-derivative of R(f,t) evaluated at f=f , i.e.

o = -=— R(£,t) (4-2)
P=f
o
The linear delay distortion, d, associated with H(f,t) is defined as the
negative of the first f-derivative of the group or envelope delay function
assoclated with ¢ (£,t) at £, L.e.

4= _"‘ (f)t) (1&-3)
af2 '

The results of mceh and extensions of 1;!1em3 provide first-order
statistics of the linear delay and amplitude distortion parameters if (as
has been agsumed in this work) the channel transfer function is assumed to
be a complex gaussian process. Ve assume that the correlation function of

the time-variant transfer function iz given by
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Ry(0,8) = H(f,t) B¥(f +0a, t + 3) = w(n)q(8)
and also

Ro(7s0,8) = 8(s) r(v) q(8)
vhere r(7) 1s given by (see Bq. (1-13))

r(t) = _[° wi) e"929% q

o
It is also assumed that r(t) is an even function of <.

It known that under the above conditions O, the linear amplitide distor-
tion of the channel, is & normal random variable with deusity fimction

1 - % ("/ocr)z

p(0) = g e (4-k)
7 1
were ¢ =[3 @b )| (4-ta)
and where
by=[ r(x) T4t 0 =0,1,2,.... (4-4b)

Furthermore, the distribution function associated with the linear delay
distortion, 4, can be expressed as follows

P{ldlz_kbzlbo:] =1--2-;’5j‘: dx

[ + g(x)] glx)

(4-5)

where  g(x) = (b, by/vl - 1+ x%) (1 +47)

We will now derive the equations necessary to compute the linear
emplitude and delay distortions azsociated with a tapped delay line system.
We first consider linear emplitude distortion. PFrom Eqs. (4-1) and (4-2)

we have
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| 1
o =2 R(e,t) = %[ﬁz(f,t) + Re,0)]?
| S | ) _ |
salFen Feo]f B e ien)

+ 2(t,1) (2 ﬁ(r,t))]

R(2,t) (% H(f,t)) + u(2,0) (% H(e,t))

t?&,t) f?(r,tnlsz e "

Similarly, using Eqs. (5-1) and (4-3) we yave for the linear delay distortion

a= ";E ¥ (t,t) - '}‘2 tan [n(f,t)ln(f,t)]

.2 2 j_a__f H(f,t)) H(e,t) - (af B(f,t))l{(f,t)

¥, iz(r,t)/xaz(r,t)] )
- (af H(f't)) B(2,t) - (a, H(f,t)) H(z,t)
3f | nz(r,t) Y1)

J{( 2 H(f,t))H(r.t) +( H(f,t))(: H(s,t)) - g-;z- n(r,t))H(f,t)-

- (& u(rt',t))(af H(f,t))}(ﬁz(f,t) + ?(f,t)] {an(f,t)@;a(r,t))

+ zn(f,t.)(s-rg H(f-;t))}{(s-f H(;',t))n(f,t) - (5-;. H(fvt))ﬁff"?)}]

s TR (1) + B(e,0))2
Finally, we have

ax [{(;31:; B(£,))R(,t) -(ff; ﬁ(f:t))ii(?:t)}[;ia(vr,t) + 2(2,0)]
- {2a(f:t)(aa—f ﬁ(f,t’)) + 'zg(f,t)@? E{f,t))}
° {(‘% H(f,t))ﬁ(f,t) - (S—a? ﬁ(f,t)\)fl(f,;ﬁ)}] 2 [?(f,t) + ?(f,t)]2 (4-Ta)



by

a=[{ -2; H(z,4))H(e,t) - (;—3; (e, ) B2, 00 o (r,8) + F(2,8)]

- 2{(;?—1. I;(f,t)) (sa? E(f,t)) [;Iz(f,t) - Ez(r,t)]

+ B(t,8) Bet) [(F B, 0)% (2 107  [Fie,e) + Een)

(4-T0)
It is now necessary to determine the gquantities ﬁ(f,t), E(f,t),
-aa—f' ;l(f,t), etc. in terms of the values of the tep gain functions bn(t).
Recall that for the tepped delay line

M
B(r;t) =) b (t) 8(x - w)
n=-M

and that H(f,t) is given by

B(£,6) = [ B(r,b) & 925

-0

Thug, for the tapped line

M

B(£,t) = [ Y b (8) 3(r - m) &I ar
- n=-M

M [
=Y b, (8)  8(r - m) &I e
ne-M -

M
H(f,8) =) b (1) oI (1-8)
n=-M .



Now recall that we have written bn(t) as

where

b (£) = b_(t) + 3b_(t)

by(t) =B {b (0}  ama b () = ;b ()]

80 we can rewrite (4-8) as

ani

M ~ -t
H(e,t) =2 [bn(t) + an(t)] [cos (2vfra) - J sin (zmn)]
ne-M

M
'Z [;n(t) cos (2«fnp) + ;n(t) sin (ZIfM)]
n=-M

+ ,{;n(t) coe (zxfm) - b_(t) sin (2xtrn) |

M
H(g,t) =)  [b,(t) cos (2ufm) + b (t) sin (2uem)]  (4=9a)

n=-M

E(r,t) =2 [gn(t) cos (2wfmp) - ;n(t) gin (zarm)] (4-9b)
n=-M

From these we obtain

M
Sa'f A(e,t) = ZtAE n[- b (t) sin (2xfra) + ;n(t) cos (2vrfm)]
n=-M
(4-10s)
3

M
Y- B(f,t) = - Zﬂnz-l( {gn(t) sin (2«xfmp) + Gn(t) cos (fom)]

(4~10b)
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2 a M - -
;ﬂg H(2,t) = - (asm)zz nz[bn(t) cos (2xfms) + b (t) sin (zmm)]
n=-M
" (4-11a)
2 -~ -~ [
i’z’ H(2,t) = - (zm)ai nTbn(t) cos (2nfr) - b_(t) sin (aufm)]
n=-M
(4-11b)

Substitution of Egs. (4-9) through (4-11) into Eqs. (4-6) and
(4-7) ylelds the values of linear amplitude and delay distortion at any
frequency £ in terms of the Muea of the tap delay line gain functions
at time t. Considerable simplification occurs if these distortion factors
are evaluated for £ = O. In this case we find

M
H(,t) =) b (t)

ne-K
® “ bl
H(£,t) -X b (t) (4-12a)
n=-M
-~ M -~
H(e,t) =7 b_(£) (4-12b)
n;-l
R M -
L H(E,t) =20 ) mb (t) (4-13a)
n=-M
a M S
L H(Et) =20 ) b (1) (4-130)

n=-M



b-7
¥

2. .
2= H(g,t) = - (za)?) o’ (t) (4-1ka)
aff gy

” Hest) = - (m)zy n b (t) (4-14n)
afz n=-M

In Section V, the results of an experiment are presented where Egs.
(4-12) through (4-14) were used with Eq. (4-7) to compute the lineer delay
distortion associated with a randomly time-variant channel simlated with a
digital computer. The distribution function for this quantity is then
compared with a plot of the theoretical distribution function for o

as given in equation (4-5).
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V. Application to Simmlation of a Tropospheric Scatter Communication
o hannel

In this sectioﬁ, a theoretical model for a tropospheric scatter
communication channel is used together with the theory presented in
Section II to construct an experimental troposcatter channel simmlation
for the digital computer. Some experimental results obtained from this
simmlator are also presented.

Sunde’ has derived an idealized model for a tropospheric scatter
chammel for which he has deduced that the response to a transmitted
sinusoid is a Geussian random process. For this model, the correlation
function RH(Q,O) can be shown to be

in 2% Q
R @,0) = zrr (T max) (5-1)

2x QT

Thus, we £ind from equations (1-15) and (2-8)

[
p(r,0) = x(r) = [ R0,0e79" Maq
.~ .
sin 2« QTmax ~-Jen QTmax

= j‘ 2RI e an
omax -2r QT
o R - T <T<T
< [ O ‘max max
x(r) 0 , elsevhere (5-2)

Experimental evidence has also been fmnd3 indicating that

2,2
a(8) = & @ 5/2 (5-3)
Thus for this channel, we have
2,2
Re’°°/2-'1' <T<T
- : ] max max _
p(‘l’ 8) {O elsevhere _ (5-4)

and

- o°8°/2
_(R8{)e © -7 <€T<T
. RB(t’“’a) N {00, elsevhere | max max (5-5)
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. Therefore, in the tapped delay line model for this channel, we find

© sintB(%-u) sinvtB(%-u)

T =1 z % o (% g r(u) du

n Ime ainxn(%-u) sinun(%-u)
* %o

A y———— —tm da
T TR DG

BT
mainvtm-_-x gin «w(n - x

=BR°J_'BT me-x)(n-x dx (5-6)
Note that for given m and n, r,, is a function only of the "t ime-
bandwidth" product BT ox except for the unimportant multiplicative
constant.
In this sectlon, results are reported concerning tapped delay
‘ line simulation of a tropospheric scatter channel possessing the
correlation function of Eq. (5-5). From equations (5-5) and (5-6)
it can be seen that four parameters are required to specify the tapped
‘delay line model. These are B, o, me and Ro°
In the system to be described, B was chosen to be .50 Hertz. Thus,
the spacing between taps on the delay line was 2 sec. o was chosgn 8o
that the time correlation function width (dlstance between e+ points)
would be at least 10 time samples (20 seconds). Therefore, o Yas8 ghosen
to be .25 gec.” . R was chosen to be 2 in order to make the constant
multiplier in (5-6) equal to unity. The value of Thax W28 chosen in
oxder to insure that the absolute value of the linear delay distortion
parameter associated with the channel would exceed 6/x secz/md. 4ok
of the time. The relationship between Tmax and the probability
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distribution function of the linear delsy distortion parameter, d, is
found in equation (4-5). However, equation (4-5) is given in terms of
the moments b o and b2 which must be related to Tmax'

Figure 7 of Reference 3 contains a grsph of equation (4-5) which
indicates that |d| exceeds the quantity kbi/b  40% of the time if k
25 approximately equal to 2. Thus, to have |d| exceed 6/x secz/rad.

0% of the time, we must have

A Jon
o™

¥ow b, and b are defined in equation (4~4b) while r(t) is given

by equation (5-2). Combining these equations we find that

by = 2lax

- 23
"z §Tmax

% _ Toax
3

o

‘herefore, from (5-7) we mast have

L

Tfmx‘%"z‘e@

T = 1, 692 8€Ce

The first step in specifying the form of the tapped delay line is
he computing of the tap gain function correlations, the rm's of
q. (5-6). For this system Eq. (5-6) was evaluated using mmerical
ntegration techniques on a digital computer. Because of the discrete
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nature of digital computations, the desired value of Tmax was rounded
off to 1.70 sec. Thus, the parameter BI .. Ves 0.85. Rquation (5-6)
was evaluated for values of m and n varying from -8 to +8 ({.e., the
matrix R is a 17 x 17 matrix). Appendix A gives the results of this
computation.

The next step required for setting up the tapped delay line system
was to determine the weighting ccefficients, the ci:j's" by solution of
Equation (2-16) for the matrix C. As discussed in Section II, this
requires the determination cf A, a diagona;l. matrix of eigenvalues of
R, and O, the matrix of eigenvectors of R. For the system to be
discussed, it was felt that a delay line of 11 taps would be sufficient
since the entries in R become quite small at a distance of five
elements from the center of the matrix. Thus, the O and A matrices
were computed for the center 11 x 11 section of the original 17 x 17 R
matrix. Appendix B lists the eigenvalues, the O matrix, and the re.sulti‘n_g
C matrix corresponding to the center 11 x 11 gection of the R matr:lx of
Appendix A.

In order to complete the design of the tapped delay line simulation
system, a linear filter mist be found which will impart the proper
autocorrelation function to each of the independent random process
to be passed through the weighting coefficients. This filter is needed
since the digital computer produces uncorrelated random numbers for
samples of random processes. These uncorrelated samples must be passed
through a linear filtering operation to produce sequences with the

proper sample-to-sample correlation. In the present case, we desgire
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to have the following mfocorrelation function

- 0282/2

q(d) = e
or equivalently, we seek the following spectral density

2y, 2
sle) =K 0 /20
Now it is known that a linear filter which will produce a random
' process with spectral density S(n) at its output when white noise is
applied to its imput possesses a transfer finction Hip) vhich satisfies
|8@)|? = 56)
Thus we can use a linear filter having transfer fimction

- 20 2
Ho) .QE.‘J o'/bo

Teking the inverse Fourier transform of H(), we £ind that the requ;lrea
impulse response is

2.2
h(t) =« L% 9t
",
In the example under dibcnuion, o has been chosen to be 25 aec'l,» S0
h(t) becomes

2 - , 2 2
yﬂi

With the C matrix and h(t) aspecified, it 1s possible to generate
the 11 required tap gain functions from 11 independent white gaussian
random processes. Figure 3 is a block diagram which indicates the
method for doing this. The block diagram of Figure 3 vas used as the
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basis of a digitel computer program to generate samples of the tap
gain functiong for a delay-line simulation of the tropospheric scatter

channel.
¥hite Process Linear
Generators Filters
h(t) — by (t)
Weighting &
h(t) p—— bz(t)
] - Sunming Filter .
- C"i 3 - . . :
h(t) v buu-.)
Pigure 3

It should be noted that the R matrix computed from Equation (5-6)
allows the expression for ﬁH(f,n,O) and ERe{Al(t)}Re{Az(t)}] given 4n
equations (3-9) and (3-15) to be evaluated. This evaluatior has been
equatione (3-9) and (3-15) to be evaluated. This has been done for both
equations with the help of a digital computer. The values for the 11 x 11
center section of the R matrix given in Appeniix A were substituted into
equations (3-9) and (3-15) for these evaluations. Plots of the results

are shown in Figures 4 through 6.



In Figure 4, the frequency correlation function for the mathematical
channel model is plotted together with QH(f, 0, 0) (Equation (3-9)) for
£ =0, 0.05, and 0.10 Hertz. These curves show the effect of approxi-
mating the physical bandlimited channel with a delay line contalning only
a finite number of teps. The mathematical model was specified to have a
frequency correlation function Rﬂ(f’ 0, 0) which is independent of the
frequency of evaluation, f, and dependent only on the 'frequency separation
Q. For the tapped delay line, however, we :‘Eind that for £ = 0.5 and 0.10
Hertz, the frequency correlation function shifts and loses the sin x/x
shape. Thus, for center frequencies not close to zero, the ll-tap delay
line does not exhibit & fréquency correlation function which is close to
that of the mathematicsl model. ‘Figures 5 and 6 show the desired theoreti-
cal frequency correlation function (sin x/x form) together with the theoreti-
cal prediction of a physical measurement of this function, E\'_Re{Al(t)}
Re{Az(t)}], obtained from equation (3-15). In Figure 5 the center frequency,
88y W, is zero, while in Figure 6, ® = 0.10 Hertz. Both figures are
plotted as a function of O = (wl - u)a)/Zn, the frequency separation.

In Figure 5, the theoretical plot of E\'_Re{A ()} Re{Az(t)}] is identical
to the plot of §H(Q) for £ = O in Figure 4, Thus we see that for w = 0,
the measured correlation function is & good approximation to the desired
sin x/x curve. In Figure 6, the theoretical plot has several intevesting
aspects. First, for values of O, greater than +.12 Hertz, the theoretical
curve is markedly different from the desired correlation function. However,

for negative values of Q, the theoretical curve is seen to bz a good approxi-

mation to the desired function. The reason for this behavior is that a measure-

ment teken for w = .1 and 0 near to .15 Hertr implies that one of the sinusoids

being passed through the charnel has a frequercy nzar .25 Hertz, which is the



wpar Limie for frequeacy components Lo he passed tharough the systew.
Ious; as woult be expected, the system dost a poor job of processing

I

i slenzis whose freguencies are near to the vpper limit for the system.
It is alsc interesting to note that the thecratical function's peak
razlud at O = 0 for w, = .10, and that the shape of the theoretlical fuxc-
tica remalns much clowzr to that of & sia x/x curve than does the curve
of Flgure 4 for £, = .10,

Hgures 5 and 6 also conteln experlmental resclts obtained from the
taged deiay line gimulator implemsnied on the diglital coaputer. These
res alns wore cbtained with the uvse of 3600 time ssmples 0 the channel
o2-onrig an vasious Lreguencles. In Fgure 5, 4t cen be s2en that the sn:
of he exyerirentzl curve coxpares well witih that of the desirzd curve,

. but the ersperimoatal walue: are almost 154 lower than the theoretical cne
It apwars thet thls dzscropancy is due o measuremsnt ipiccurscy caused
reratively swpell number of time samples uscd 1n the experiment. In Figur
it zan be seen that the experimental values obtained agree quite well wit
T theoretlicslly predicted values and thst the desired sin x/x fom is

act leved.

HMgore

% shows tue results of an experiwent ¢o detemine the disizd
tina fanction for the iinear delay distortlion parameter asscclsdzd with 4

tapred delay line simuilator. The theoretical plet is & plot of 2quation

whizh gives the theoretical dlstributicn function of the linesr Jelay diuk

Ja%n

tlon aramzber for the mathematical redel telng used. The experiment oo

of sating esnavlonr beTh, 5212 bo13 end B3t to compute the valus of & Fry

e s gedin Jureblos wlozs Por each insiant of dime.  The valugs of d
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oblalred were used to form a histogrem whica was thep comverted into an
exgorimental élstribution fumetion. Figure 7 indicates scme of the polnis
from this experimental distribution function. It czb be seen that the

exgorimertal and theoreticel distribution funciicns conpare guite well.
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VI. Conclusions

It is concluded that the meihods presented in this report can be
used for designing acceptable tapped delay line models of randomly
tim-variant channels. Further it has been shown that digital computer
simulation of the tapped delay line model is practical. In this report
an example is presented for which several experimentally measured
quantities assoclated with the system gave good agreement with those
of the desired mathematical model. It is also seen that the tapped
delay line simlsator can give poor results if signals with frequencies
very close to the theoretical limits of the simulator are used. It
appears that a digital line-variant channel simulator of the type de-~
scribed in this memorandum can be useful for testing of modulation and
demodulation schemes for use with time-variant channels.



Row Number

Appendix A

8 N O W & W NN 2 O

-8
0.001569
=0,001797
0.,002103
-0,002535
0.003194
-0.004330
0.006811
-0.019131
~-0.001556
0.017646
-0,006576
0.004232
~0,003139
0.002500
-0,002079
0.001780
~0.001556

Column Number

=7
=0.001797
0.002058
~0,002408
0.002903
«0.003659
0.004963
-0,007813
0.022020
0.002035
~-0.020076
0.007507
-0,004835
0.003588
=0,002858
0.,002377
«=0,002035
0.001780

-6
0.002103
-0,002408
0.002818
-0.003398
0,004285
~0.005815
0.009165
=0.025942
~0.002776
0.023288
-0,008746
0.005639
-0.,004188
0.003337
-0,002776
0.002377
-0.002079

-5
~0.002535
0.002903
-0,003398
0.004099
-0.005171
0.007023
~0.011087
0.031578
0.004011
-0,027736
0.010481
-0.006769
0.005031
-0.00401L
0.003337
-0.002858
0.002500

The following are the entries for the R matrix computed from
equation (5~6) for BT, . = .85 and BR, = 1.

=%
0.073194
-0.003659
0.024285
-0,095171
0.006527
-0,008875
0.014045
=0,040380
-0.026306
0.034318
-0.013089
0.0908475
-0.006306
0,005031
-0,004188
0,003588
-0,003139



Row Number

Row

@ 2 o0 W - W N O

-3
~0.004330
0.004963
~0.005815
0.007023
~0.008875
1 0.012092
~0.019214
0,056133
0.011366
-0.045116
0.017482
~0.011366
0.008475
«0.006769
0.005639
-0.004835
0.004232

Column Number

-2
0.006811
~0.007813
0.009165
-0.011087
0,014,045
-0.019214
0.030793
~0.093051
«0,026657
0.066559
-0.026657
0,017482
~0,013089
0.010481
-0.008746
0,007507
-0,006576

=1
=0,019131
0,022020
=0,025942
0.031578
=0.,040380
0.056133
-0.093051
0-,328303
0.146364
~0,146346
0.066559
-0.045116
0.,034318
-0,027736
0.023288
-0,020076
0.,017646

0
=0,001556

0.002035
-0.002776
0.004011
~0.006306
0.011366
=0.026657
0.146364L
0.900085
0.146364
~0,0265657
0.011366
-0,006306
0.004011
-0,002776
0.002035
-0.001556

A-2

1
0.017646
=0,220076
0.023288
=0.027736
0.034318
-0,045116
0.066559
=0, 146364
0.146364
0,328303
-0.093051
0.056133
-=0.040380
€.,031578
~0.,025942
0.022020

-0.C19131



ber

Row

=0.006576
0,007507
=0,008746
0.010481
=0,013089
0.017482
=-0,026657
0.066559
-0.026657
-0.093051
0.030793
-0.019214
0.014045
=0.011087
0,009165
=0,007813

0.006811

Column Number

0.004232

~0.004834
0.005639
-0.006769
0.008475
-0.,011366
0.017482
-0.045116
0.011366
0.056133
~0,019214
0.012092
~0.008875
0.007023
-0,005815
0.004963
-0,004330

4

~0.003139
0.003588
=0,004188
0.005031
=0,006306
0.008475
-0.,013C49
0,034,318
=0,006306
=0,040380
0.014045
-0,008875
0,006527
-0.005171
0.004285
-0,003659
0.003194

0.002500
~0,002858
0.003337
=0.004011
0.005031
=0.006769
0.010481
=0,027736
0,004011
0.031578
=0,011087
0.007023
-0.,005171
0.,004099
-0.,003398
0,002903

«0,002535

=0,002079
0.002377
=0,0062776
0.0¢G3337
-0.004188
0.005639
=0.,0038746
0.023288
-0.002776
-0.£25942
0.C09165
=-0.005815
0.004285
«=0,003398
0.002818
-0.002408

0.002103
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0.001780
=0,002035
0.,002377
=0,002858
0.,003588
=0,004834
0,007507
-0.020076

0.002035
0.022020
-0.007813

0.004963
-0,003659
0.002903
~0.002408
0.002058
~0,001797

Golumn Number

-0.001556
0.001780
~0.002079
0.002500
=0,003139
0.004232
=0.006576
0.017646
-0,001556
-0.019131
0.006811
-0.004330
0.,00319%
=0.002535
0.002103
-0.,001797
0.001569




Apjendix B

In this appendix, the eigenvalues and the matrix of elgsznvectors

ar: given for the center 11 x 11 section of the R matrix given in

Apsendix A, The C matrix which satisfies equation (2-16) is also

given, The relationship between the eigenvalues, matrix of eigen-
vectors and C is given by equation (2-18),

The eigenvalues of R are:

«957946
. 570340
.129005
.617526 x 102
.245153 x 10-3
.238504 x 105
434760 x 10=7
J122817 ¥ 10=7
.120857 x 108
-.992990 x 10-8
~-.101912 x 10-=7

Since the R matrix is a covariance matrix, it is positive definite,

Tharefore it should not possess negative eigenvalues, It appears
that the two negative eigenvalues shown above are due to round-of:
erirors in the digital computation.

The matrix of eigenvectors of R, the O matrix,is given on pager
B2 snd B-3, The C matrix corresponding to the center 11 x 1l section of the

of the R matrix given in Appendix A is shown on pages B-4 and B-5,
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L

S

w N O

W

-5

- - 004798
«007559
=,013642
-032117
-,183278
<o GOLL81
=.183277
~032118
-.013641
007558
~.00480L

-4

~.081679
0102811
=,139285
« 219257
=,644388
o 000002
-6h4349
=,219490
-139391
-.102872
~081696

~,01241.2

.019633
= .035365
.C87598
= ,675052
263837
,675053
.087598
035865
-.019633
02412

busher

«2

-454795
-290562
- L0000
=2 290564
-.454805
-325809
«.249268
-2011.08

=X

.101332

279401
-.613136
-.103386
-, 012870
-,103386
-,613131

279403
=.157996

-101335

-.315848
.328,88
~.24,3429
-. 482071
-.018991
LO00000
.018996
.482366
.24,3873
~232905L
-315496
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1 2 3 4 5
-.329327 -,580234 =, 254272 2147341 - 582072
0259844 ~+351754 oW911Ldy . 572151 -.296764
~ 462944 171039 426004, -431361 237570
~.331418 056954 025565 058440 085875
- COLTT5 .000260 =,000249 000032 .000828
- 000184 . 000000 .000018 . 000011 -, 000028
~ 004772 - 000283 ~,0003L6 -,000676 .000705
-.3304L89 -.061188 .026298 -.115577 056363
=.459531 0197257 434989 ~ 540041 072977
256065 331558 515911 =,252345 -.437233
-0337435 «995411 -.2364T +304576 0 556446



W O W RN MO

-5

.008708
~,010789
,0L4536
= 021977
. 038872
003333
~.031457
-018999
=0 013171
»01.0050

-, 008109

=h

=,010789
013695
-,018372
0280L1
=, (50212
-, 005244
.038L87
=,023357
016241
=, 012443

. 010057

014536

-,018372
025029
~,038728
Roypivis
009423
-, 049656
-030339
-, 021204
.01525

-.013154

~2

=, 01977
028041

-. 043284
.030333
~.023346
.018%50

-1

038872
-.050212
-071042
~,122309
. 516942
-109064
-,1231,88
070408
=.049711
038520
-,031467

<OCU3333
~, 005244
009423
- UR1LEFS

L 10806

ol

6

0935458
» 109060
-, 021894
~009L2%
-, Q08242

003338



~- 031457
038487
. 069656
070288
=.123488
109060
< 516904
=0 3.22417
072089
=,050238
038879

.01899¢%
=.023357
-030339
=.043284
070408
-, 021894
- 322417
062673
~.0387568
- 0R8069

- GRL9S7

~,013171
016241
~ 021204
030333
-.049711
009421
071089
~.038768
025058

-01453.

-010050
-, 012443
016249
-,023346
038520
~.005242
= 050238
028069
-, 018394
-013648

=, 010801

=, 008109
010057
~ 013154
.018990
-0 031467
003338
038879
-, 021997
~0LL531
- 0105304
008715
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